Rapid Information Transfer in Swarms Under Update-Rate-Bounds Using Delayed Self-Reinforcement

Author:

Devasia Santosh1

Affiliation:

1. Fellow ASME Mechanical Engineering Department, University of Washington, Seattle, WA 98195-2600 e-mail:

Abstract

The effectiveness of a network's response to external stimuli depends on rapid distortion-free information transfer across the network. However, the rate of information transfer, when each agent aligns with information from its network neighbors, is limited by the update rate at which each individual can sense and process information. Moreover, such neighbor-based, diffusion-type information transfer does not predict the superfluid-like information transfer during swarming maneuvers observed in nature. The main contribution of this paper is to propose a novel model that uses self-reinforcement, where each individual augments its neighbor-averaged information update using its previous update to (i) increase the information-transfer rate without requiring an increased, individual update-rate and (ii) enable superfluid-like information transfer. Simulations results of example systems show substantial improvement, more than an order of magnitude increase, in the information transfer rate, without the need to increase the update rate. Moreover, the results show that the delayed self-reinforcement (DSR) approach's ability to enable superfluid-like, distortion-free information transfer results in maneuvers with smaller turn radius and improved cohesiveness. Such faster response rate with limited individual update rate can enable better understanding of cohesiveness of flocking in nature, as well as improve the performance of engineered swarms such as unmanned mobile systems.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3