Low-distortion information propagation with noise suppression in swarm networks

Author:

Tiwari Anuj1ORCID,Devasia Santosh1ORCID,Riley James J.1ORCID

Affiliation:

1. Mechanical Engineering Department, University of Washington, Seattle, WA 98195

Abstract

A method for low-distortion (low-dissipation, low-dispersion) information propagation in swarm-type networks with suppression of high-frequency noise is presented. Information propagation in current neighbor-based networks, where each agent seeks to achieve a consensus with its neighbors, is diffusion-like, dissipative, and dispersive and does not reflect the wave-like (superfluidic) behavior seen in nature. However, pure wave-like neighbor-based networks have two challenges: i) It requires additional communication for sharing information about time derivatives and ii) it can lead to information decoherence through noise at high frequencies. The main contribution of this work is to show that delayed self-reinforcement (DSR) by the agents using prior information (e.g., using short-term memory) can lead to the wave-like information propagation at low-frequencies as seen in nature without the need for additional information sharing between the agents. Moreover, it is shown that the DSR can be designed to enable suppression of high-frequency noise transmission while limiting the dissipation and dispersion of (lower-frequency) information content leading to similar (cohesive) behavior of agents. In addition to explaining noise-suppressed wave-like information transfer in natural systems, the result impacts the design of noise-suppressing cohesive algorithms for engineered networks.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3