Experimental Investigation of Flow Boiling Instability in a Single Horizontal Microtube With and Without Inlet Restriction

Author:

Fan YanFeng1,Hassan Ibrahim1

Affiliation:

1. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC, H3G 2W1, Canada

Abstract

An experimental study is conducted to investigate the effects of inlet restriction (orifice) on flow boiling instability in a single horizontal microtube. The test-section is composed of a stainless steel tube with an inner diameter of 889 μm, and a length of 150 mm. Experiments are performed for three different orifice configurations with 20%, 35%, and 50% area ratio. Mass flux is varied from 700 to 3000 kg/m2 · s, whereas the heat flux is varied from 6 to 27 W/cm2. The dielectric coolant FC-72 is selected as the working fluid. In the absence of an orifice at the inlet, four oscillation types are observed at the onset of flow instability; it is also noticed that the frequency of the oscillations increases with increasing heat flux, while the amplitude remains constant. The addition of an orifice at the inlet helps stabilizing the flow without generating significant pressure drop at the same operating condition as the microtube without orifice. The 20% area ratio orifice shows better performance at low mass fluxes (<1000 kg/m2 · s). Whereas, at high mass fluxes (>2000 kg/m2 · s), 50% and 35% area ratio orifices are efficient in stabilizing the flow or delaying the onset of flow instability. Therefore, selecting the area ratio of the orifice depends on the operating condition. A small area ratio orifice is preferably used at low mass fluxes, whereas a large area ratio orifice is more suitable for high mass fluxes.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3