An Upper-Bound Approach to Cold-Strip Rolling

Author:

Avitzur Betzalel1

Affiliation:

1. Technion—Israel Institute of Technology, Haifa, Israel

Abstract

The operation of cold-strip rolling is treated under the assumption of “Mises” material. A lower upper bound on energy consumption is computed. Then, assuming constant shear between strip and rolls, an approximate value of the actual energy is determined. Another value is arrived at by assuming Coulomb friction between strip and rolls. An efficiency factor is determined through the ratio of required to ideal energy, the former being the combined energy of deformation and friction losses on the strip surface. The total deformation energy includes the internal strain energy (ideal energy) associated with an assumed strain field and the energy along the surfaces of velocity discontinuities. The roll torque, minimum required friction (or maximum possible reduction), and efficiency are determined as functions of the other process variables. Results are presented graphically and as mathematical expressions. This study is a direct sequel to an earlier paper [6], in which velocity discontinuities were disregarded.

Publisher

ASME International

Subject

General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverse flow stress characterization in hot rolling;2024-04-08

2. Modeling of metal forming: a review;Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques;2020

3. A rational analytical model of flat rolling problem;Acta Mechanica;2018-04-19

4. Rolling;Mechanical Properties and Working of Metals and Alloys;2018

5. Experimental characterization and finite element modeling of through thickness deformation gradient in a cold rolled zirconium sheet;CIRP Journal of Manufacturing Science and Technology;2017-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3