Nonlinear Vibrations and Chaotic Dynamics of the Laminated Composite Piezoelectric Beam

Author:

Yao Minghui1,Zhang Wei1,Yao Zhigang2

Affiliation:

1. Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Structures, College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China e-mail:

2. Beijing Industrial Technician College, Beijing 100023, China e-mail:

Abstract

This paper investigates the complicated dynamics behavior and the evolution law of the nonlinear vibrations of the simply supported laminated composite piezoelectric beam subjected to the axial load and the transverse load. Using the third-order shear deformation theory and the Hamilton's principle, the nonlinear governing equations of motion for the laminated composite piezoelectric beam are derived. Applying the method of multiple scales and Galerkin's approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of principal parametric resonance and 1:9 internal resonance. From the averaged equations obtained, numerical simulation is performed to study nonlinear vibrations of the laminated composite piezoelectric beam. The axial load, the transverse load, and the piezoelectric parameter are selected as the controlling parameters to analyze the law of complicated nonlinear dynamics of the laminated composite piezoelectric beam. Based on the results of numerical simulation, it is found that there exists the complex nonlinear phenomenon in motions of the laminated composite piezoelectric beam. In summary, numerical studies suggest that periodic motions and chaotic motions exist in nonlinear vibrations of the laminated composite piezoelectric beam. In addition, it is observed that the axial load, the transverse load and the piezoelectric parameter have significant influence on the nonlinear dynamical behavior of the beam. We can control the response of the system from chaotic motions to periodic motions by changing these parameters.

Publisher

ASME International

Subject

General Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3