Surrogate-Assisted Modeling and Robust Optimization of a Micro Gas Turbine Plant With Carbon Capture

Author:

Giorgetti Simone1,Coppitters Diederik2,Contino Francesco2,Paepe Ward De3,Bricteux Laurent3,Aversano Gianmarco4,Parente Alessandro4

Affiliation:

1. Aero-Thermo-Mechanics Department, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, Brussels 1050, Belgium; Faculty of Engineering, Université de Mons (UMONS), Place du Parc 20, Mons 7000, Belgium

2. Thermo and Fluid Dynamics (FLOW), Vrije Universiteit Brussel, Rue Fritz Toussaint 8, Brussels 1050, Belgium

3. Faculty of Engineering, Université de Mons (UMONS), Place du Parc 20, Mons 7000, Belgium

4. Aero-Thermo-Mechanics Department, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, Brussels 1050, Belgium

Abstract

Abstract The growing share of wind and solar power in the total energy mix has caused severe problems in balancing the electrical power production. Consequently, in the future, all fossil fuel-based electricity generation will need to be run on a completely flexible basis. Microgas turbines (mGTs) constitute a mature technology which can offer such flexibility. Even though their greenhouse gas emissions are already very low, stringent carbon reduction targets will require them to be completely carbon neutral: this constraint implies the adoption of postcombustion carbon capture (CC) on these energy systems. Despite this attractive solution, an in-depth study along with a robust optimization of this system has not yet been carried out. Hence, in this paper, a typical mGT with exhaust gas recirculation has been coupled with an amine-based CC plant and simulated using the software aspenplus. A rigorous rate-based simulation of the CO2 absorption and desorption in the CC unit offers an accurate prediction; however, its time complexity and convergence difficulty are severe limitations for a stochastic optimization. Therefore, a surrogate-based optimization approach has been used, which makes use of a Gaussian process regression (GPR) model, trained using the aspenplus data, to quickly find operating points of the plant at a very low computational cost. Using the validated surrogate model, a stochastic optimization has been carried out. As a general result, the analyzed power plant proves to be intrinsically very robust, even when the input variables are affected by strong uncertainties.

Funder

Funds pour la Recherche Scientifique

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3