Laser Induced Porosity and Crystallinity Modification of a Bioactive Glass Coating on Titanium Substrates

Author:

Kongsuwan Panjawat1,Brandal Grant1,Lawrence Yao Y.2

Affiliation:

1. Department of Mechanical Engineering, Columbia University, New York, NY 10027 e-mail:

2. Professor Advanced Manufacturing Laboratory, Department of Mechanical Engineering, Columbia University, New York, NY 10027 e-mail:

Abstract

Functionally graded bioactive glass coatings on bioinert metallic substrates were produced by using continuous-wave (CW) laser irradiation. The aim is to achieve strong adhesion on the substrates and high bioactivity on the top surface of a coating material for load-bearing implants in biomedical applications. The morphology and microstructure of the bioactive glass from the laser coating process were investigated as functions of processing parameters. Laser sintering mechanisms were discussed with respect to the resulting morphology and microstructure. It has been shown that double layer laser coating results in a dense bond coat layer and a porous top coat layer with lower degree of crystallinity than an enameling coating sample. The dense bond coat strongly attached to the titanium substrate with a 10 μm wide mixed interfacial layer. A highly bioactive porous structure of the top coat layer is beneficial for early formation of a bone-bonding hydroxycarbonate apatite (HCA) layer. The numerical model developed in this work also allows for prediction of porosity and crystallinity in top coat layers of bioactive glass developed through laser induced sintering and crystallization.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference52 articles.

1. Bioactive Glass Coatings: A Review;Surf. Eng.,2011

2. Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications;Mater. Sci. Eng.,2004

3. Application of Surface Modification in Biomedical Materials Research;Surf. Rev. Lett.,2007

4. Orthopedic Coating Materials: Considerations and Applications;Expert Rev. Med. Devices,2009

5. Biomaterials: A Forecast for the Future;Biomaterials,1998

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3