Test Method Development to Quantify the In Situ Elastic and Plastic Behavior of 62%Sn–36%Pb–2%Ag Solder Ball Arrays in Commercial Area Array Packages at −40 °C , 23 °C, and 125 °C

Author:

Obaid Ahmad Abu1,Sloan Jay G.2,Lamontia Mark A.2,Paesano Antonio1,Khan Subhotosh3,Gillespie John W.4

Affiliation:

1. Center for Composite Materials, University of Delaware, Newark, DE 19716

2. DuPont Engineering Technology, Beech Street Engineering Center, Wilmington, DE 19803-0840

3. DuPont Thermount® Business Team, Richmond, VA 23234

4. Center for Composite Materials, Department of Materials Science and Engineering, and Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716

Abstract

The objective of this study is to describe and evaluate test methods developed to experimentally characterize the in situ mechanical behavior of solder ball arrays connecting printed wiring boards to area array packages under tensile, compressive, and shear loading at −40, 23, and 125 °C. The solder ball arrays tested were composed of 62%Sn–36%Pb–2%Ag solder alloy. Finite element modeling was performed. The results indicated that the test fixture should be geometrically equivalent to the projected shape of the ball grid array to achieve uniform loading. Tension, compression, and shear tests were conducted. For tensile loading the interfaces and the solder balls are loaded in series resulting in a large apparent strain (13%). Various interfacial failure modes are observed. Under compression and shear loading the effect of the interfaces are negligible and therefore a significant deformation and a remarkable yielding behavior of solder ball arrays can be observed. Furthermore, the specimens tested under shear loading showed different failure modes such as cohesive or adhesive failure modes depending on the test temperature. From the overall results, it has been determined that shear loading is the most representative test to measure the actual mechanical behavior of solder in ball grid arrays.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review of mechanical properties of lead-free solders for electronic packaging;Journal of Materials Science;2009-03

2. Evolution of Lead Free Solder Material Behavior During Isothermal Aging;Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology;2006-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3