Revisiting the Instability and Bifurcation Behavior of Soft Dielectrics

Author:

Yang Shengyou1,Zhao Xuanhe23,Sharma Pradeep45

Affiliation:

1. Department of Mechanical Engineering, University of Houston, Houston, TX 77204

2. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;

3. Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139

4. Department of Mechanical Engineering, University of Houston, Houston, TX 77204;

5. Department of Physics, University of Houston, Houston, TX 77204 e-mail:

Abstract

Development of soft electromechanical materials is critical for several tantalizing applications such as human-like robots, stretchable electronics, actuators, energy harvesting, among others. Soft dielectrics can be easily deformed by an electric field through the so-called electrostatic Maxwell stress. The highly nonlinear coupling between the mechanical and electrical effects in soft dielectrics gives rise to a rich variety of instability and bifurcation behavior. Depending upon the context, instabilities can either be detrimental, or more intriguingly, exploited for enhanced multifunctional behavior. In this work, we revisit the instability and bifurcation behavior of a finite block made of a soft dielectric material that is simultaneously subjected to both mechanical and electrical stimuli. An excellent literature already exists that has addressed the same topic. However, barring a few exceptions, most works have focused on the consideration of homogeneous deformation and accordingly, relatively fewer insights are at hand regarding the compressive stress state. In our work, we allow for fairly general and inhomogeneous deformation modes and, in the case of a neo-Hookean material, present closed-form solutions to the instability and bifurcation behavior of soft dielectrics. Our results, in the asymptotic limit of large aspect ratio, agree well with Euler's prediction for the buckling of a slender block and, furthermore, in the limit of zero aspect ratio are the same as Biot's critical strain of surface instability of a compressed homogeneous half-space of a neo-Hookean material. A key physical insight that emerges from our analysis is that soft dielectrics can be used as actuators within an expanded range of electric field than hitherto believed.

Funder

National Science Foundation

Qatar National Research Fund

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference46 articles.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3