Analysis of Contact Characteristics of Small Rough Surfaces Taking Bulk Deformation and Meniscus Force Into Consideration

Author:

Ono Kyosuke1,Yamane Masami2

Affiliation:

1. Storage Technology Research Center, Central Research Laboratory, Hitachi Ltd, 2880, Kozu, Odawara-shi, Kanagawa-ken 256-8510, Japan

2. Department of Mechanical and Control Engineering, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Abstract

We numerically investigated the characteristics of contact force, adhesion force, and contact stiffness between a smooth contact pad and a small rough surface, such as a current magnetic disk surface. The computer-generated asperity had an isotropic Gaussian distribution with a small asperity height and high asperity density. We took asperity contact, bulk deformation, and meniscus force of a lubricant layer at contacting asperity into consideration in the calculations. We evaluated the effects of asperity density, contact pad area, asperity radius, root mean square (RMS) asperity height, and lubricant thickness on external and internal contact forces, adhesion force, and contact stiffness as a function of the separation between the contact pad and disk in both approaching and separating processes. We found that contact and adhesion force tend to change suddenly at the start and end of contact and exhibits hysteresis in the approaching and separating processes when asperity density becomes large and RMS asperity height becomes small comparable with current head sliders and magnetic disks. We also found that contact stiffness is governed by bulk deformation and that the contact stiffness and adhesion force can be regarded as constant during contact when the asperity density increases, the RMS asperity height decreases, and the contact area increases.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3