Experimental and Theoretical Investigation of Bouncing Vibrations of a Flying Head Slider in the Near-Contact Region

Author:

Ono Kyosuke1,Yamane Masami2

Affiliation:

1. Storage Technology Research Center, Central Research Laboratory, Hitachi Ltd., 2880 Kozu, Odawara-shi, Kanagawa-ken, 256-8510, Japan

2. Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan

Abstract

We experimentally and theoretically investigated in detail bouncing vibrations of a flying head slider in the near-contact region between the head and disk surface. By changing the Z-height in the experiment, we evaluated the effect of the pitch static angle on the ambient pressure at which unstable bouncing vibration starts and stops. We found that the touch-down and take-off pressure hysteresis decreased as the pitch static angle increased even though the flying height at the trailing edge decreased slightly. From detailed measurement of the slider dynamics at the threshold of the bouncing vibration, we found that the trailing edge of the slider was first attracted to the disk. As the pitch static angle decreased, the magnitude of the first drop of the trailing edge increased and the bouncing vibration amplitude increased more rapidly. We also measured the mode of the bouncing vibration by using two laser Doppler vibrometers simultaneously. By using an improved two-degree-of-freedom slider model, in which the small micro-waviness and the shearing force of the lubricant were taken into account, we could analyze the touch-down/take-off hysteresis, mode, and destabilization process of the bouncing vibration similar to the experimental results. We also theoretically found that either self-excited bouncing vibration with lower pitch frequency or forced vibration with higher pitch frequency was generated, depending on the magnitudes of the micro-waviness and the disturbance.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3