Affiliation:
1. Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Trieste, Italy
2. Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
Abstract
Buoyancy effects can be significant in the rotating annular cavities found between compressor discs in gas-turbine engines, where Rayleigh numbers above 1012 are common. In some engines, the cavity is “closed” so that the air is confined between four rotating surfaces: two discs and inner and outer cylinders. In most engines, however, the cavity is “open” and there is an axial throughflow of cooling air at the center. For open rotating cavities, a review of the published evidence suggests a Rayleigh–Bénard type of flow structure, in which, at the larger radii, there are pairs of cyclonic and anti-cyclonic vortices. The toroidal circulation created by the axial throughflow is usually restricted to the smaller radii in the cavity. For a closed rotating annulus, solution of the unsteady Navier–Stokes equations, for Rayleigh numbers up to 109, show Rayleigh–Bénard convection similar to that found in stationary enclosures. The computed streamlines in the r-θ plane show pairs of cyclonic and anti-cyclonic vortices; but, at the larger Rayleigh numbers, the computed isotherms suggest that the flow in the annulus is thermally mixed. At the higher Rayleigh numbers, the computed instantaneous Nusselt numbers are unsteady and tend to oscillate with time. The computed time-averaged Nusselt numbers are in good agreement with the correlations for Rayleigh–Bénard convection in a stationary enclosure, but they are significantly higher than the published empirical correlations for a closed rotating annulus.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献