Affiliation:
1. IBM Research Division, Almaden Research Center, San Jose, Calif. 95120-6099
2. Department of Materials Science and Engineering, Stanford University, Stanford, Calif. 94305
Abstract
The analysis of real area of contact for particulate and thin-film rigid disks is presented. The mechanical properties (hardness and modulus) of the disk structure are measured by a nanoindentation apparatus and the surface texture is measured by a three-dimensional noncontact optical profiler. For typical rigid disks selected for this study, we find that most contacts are elastic; the same observation was made by Bhushan (1984) for flexible media. In the case of elastic contacts, the real area of contact is governed by the effective elastic modulus of the disk structure and its surface summit distribution. Typical values for the fractional real area of contact, number of contacts per unit area, mean asperity diameter, and mean real pressure for a thin-film disk are calculated to be of the order of 5 × 10−5, 20/mm2, 1μm, and 200 MPa, respectively.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献