Investigation of Nano-Mechanical and- Tribological Properties of Hydrogenated Diamond Like Carbon (DLC) Coatings

Author:

Jeng Y.-R.,Islam S.,Wu K-T.,Erdemir A.,Eryilmaz O.

Abstract

AbstractHydrogenated diamond like Carbon (H-DLC) is a promising lubricious coating that attracted a great deal of interest in recent years mainly because of its outstanding tribological properties. In this study, the nano-mechanical and -tribological properties of a range of H-DLC films were investigated. Specifically, four kinds of H-DLC coatings were produced on Si substrates in pure acetylene, pure methane, 25% methane + 75% hydrogen, 50% methane + 50% hydrogen discharge plasmas using a plasma enhanced chemical vapour deposition (PECVD) system. Nano indentation was performed to measure the mechanical properties such as hardness and young's modulus and nanoscartching was performed to investigate the frictional behavior and wear mechanism of the H-DLC samples in open air. Moreover, Vickers indentation method was utilized to assess the fracture toughness of the samples. The results revealed that there is a strong correlation between the mechanical properties (hardness, young's modulus, fracture toughness) and the friction coefficient of DLC coatings and the source gas chemistry. Lower hydrogen to carbon ratio in source gas leads to higher hardness, young's modulus, fracture toughness and lower friction coefficient. Furthermore, lower wear volume of the coated materials was observed when the friction coefficient was lower. It was also confirmed that lower hydrogen content of the DLC coating leads to higher wear resistance under nanoscratch conditions.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3