Turbine Engine Icing Spray Bar Design Issues

Author:

Bartlett C. S.1

Affiliation:

1. Department of Propulsion Testing Technology, AEDC Group, Arnold Engineering Development Center, Sverdrup Technology, Inc., Arnold AFB, TN 37389

Abstract

Techniques have been developed at the Engine Test Facility (ETF) of the Arnold Engineering Development Center (AEDC) to simulate flight through atmospheric icing conditions of supercooled liquid water droplets. Ice formed on aircraft and propulsion system surfaces during flight through icing conditions can, even in small amounts, be extremely hazardous. The effects of ice are dependent on many variables and are still unpredictable. Often, experiments are conducted to determine the characteristics of the aircraft and its propulsion system in an icing environment. Facilities at the ETF provide the capability to conduct icing testing in either the direct-connect (connected pipe) or the free-jet mode. The requirements of a spray system for turbine engine icing testing are described, as are the techniques used at the AEDC ETF to simulate flight in icing conditions. Some of the key issues facing the designer of a spray system for use in an altitude facility are identified and discussed, and validation testing of the design of a new spray system for the AEDC ETF is detailed. This spray system enables testing of the newest generation of high-thrust turbofan engines in simulated icing conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference11 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of DES Turbulence Models with the Flow around Circular Cylinder at ReD=3900;23rd AIAA Computational Fluid Dynamics Conference;2017-06-02

2. Simulating the Behavior of Droplets entrained into the Wake Flow of Spray Bar;8th AIAA Atmospheric and Space Environments Conference;2016-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3