Dynamic Force on an Elbow Caused by a Traveling Liquid Slug

Author:

Hou Darcy Q.1,Tijsseling Arris S.2,Bozkus Zafer3

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, and School of Computer Science and Technology, Tianjin University, Tianjin 300072, China e-mail:

2. Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands e-mail:

3. Hydromechanics Laboratory, Department of Civil Engineering, Middle East Technical University, Ankara 06800, Turkey e-mail:

Abstract

The impact force on an elbow induced by traveling isolated liquid slugs in a horizontal pipeline is studied. A literature review reveals that the force on the elbow is mainly due to momentum transfer in changing the fluid flow direction around the elbow. Therefore, to accurately calculate the magnitude and duration of the impact force, the slug arrival velocity at the elbow needs to be well predicted. The hydrodynamic behavior of the slug passing through the elbow needs to be properly modeled too. A combination of 1D and 2D models is used in this paper to analyze this problem. The 1D model is used to predict the slug motion in the horizontal pipeline. With the obtained slug arrival velocity, slug length, and driving air pressure as initial conditions, the 2D Euler equations are solved by the smoothed particle hydrodynamics (SPH) method to analyze the slug dynamics at the elbow. The 2D SPH solution matches experimental data and clearly demonstrates the occurrence of flow separation at the elbow, which is a typical effect of high Reynolds flows. Using the obtained flow contraction coefficient, an improved 1D model with nonlinear elbow resistance is proposed and solved by SPH. The 1D SPH results show the best fit with experimental data obtained so far.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3