Center-Oriented Aiming Strategy for Heliostat With Spinning-Elevation Tracking Method

Author:

Waghmare Sainath A.1,Puranik Bhalchandra P.1

Affiliation:

1. Department of Mechanical Engineering, IIT Bombay, Mumbai 400076, India

Abstract

Abstract Spinning-elevation (SE) tracking system produces a decent image on the receiver surface; however, it is subjected to large variations in tracking speed. In this research, a graphical ray tracing (GRT) model for center-oriented spinning-elevation (COSE) tracking method is developed to evaluate tracking angles. Instead of a target, a heliostat is pointed toward the on-field center point of the tower. Therefore, a spinning-axis of rotation is a line joining a heliostat, and a center of the tower and elevation-axis is perpendicular to it. This aiming strategy has shown a substantial reduction in rotations of spinning-motor. In contrast, the elevation-motor runs at slightly higher rotations than the target-oriented SE method for the same application. Also, COSE tracking method obtains better shape of the reflected image with less aberration on the receiver surface as compared with SE and the traditional Azimuth-elevation (AE) method.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3