Automatic heliostat learning for in situ concentrating solar power plant metrology with differentiable ray tracing

Author:

Pargmann MaxORCID,Ebert Jan,Götz MarkusORCID,Maldonado Quinto DanielORCID,Pitz-Paal Robert,Kesselheim StefanORCID

Abstract

AbstractConcentrating solar power plants are a clean energy source capable of competitive electricity generation even during night time, as well as the production of carbon-neutral fuels, offering a complementary role alongside photovoltaic plants. In these power plants, thousands of mirrors (heliostats) redirect sunlight onto a receiver, potentially generating temperatures exceeding 1000°C. Practically, such efficient temperatures are never attained. Several unknown, yet operationally crucial parameters, e.g., misalignment in sun-tracking and surface deformations can cause dangerous temperature spikes, necessitating high safety margins. For competitive levelized cost of energy and large-scale deployment, in-situ error measurements are an essential, yet unattained factor. To tackle this, we introduce a differentiable ray tracing machine learning approach that can derive the irradiance distribution of heliostats in a data-driven manner from a small number of calibration images already collected in most solar towers. By applying gradient-based optimization and a learning non-uniform rational B-spline heliostat model, our approach is able to determine sub-millimeter imperfections in a real-world setting and predict heliostat-specific irradiance profiles, exceeding the precision of the state-of-the-art and establishing full automatization. The new optimization pipeline enables concurrent training of physical and data-driven models, representing a pioneering effort in unifying both paradigms for concentrating solar power plants and can be a blueprint for other domains.

Publisher

Springer Science and Business Media LLC

Reference83 articles.

1. Edenhofer, O. et al. Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2011).

2. Viebahn, P. et al. Technologien für die energiewende: Technologiebericht-band 1. teilbericht 2 zum teilprojekt a im rahmen des strategischen bmwi-leitprojekts" trends und perspektiven der energieforschung". Technical Report, Wuppertal Report (2018).

3. Schäppi, R. et al. Drop-in fuels from sunlight and air. Nature 601, 63–68 (2022).

4. Pregger, T. et al. Prospects of solar thermal hydrogen production processes. Int. J. Hydrogen Energy 34, 4256–4267 (2009).

5. Lovins, A. Decarbonizing our toughest sectors-profitably. MIT Sloan Manag. Rev. 63, 46–55 (2021).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3