Influence of Weld Factors on Creep-Rupture Cracking at Elevated Temperature

Author:

Dhalla A. K.1

Affiliation:

1. Westinghouse Advanced Energy Systems, Madison, PA 15663

Abstract

The purpose of this paper is to identify the weld effects which are of primary importance in elevated temperature design. A full-scale Fast Flux Test Facility (FFTF) Intermediate Heat Exchanger (IHX) was tested at Westinghouse to investigate weld effects at elevated temperature. The IHX was subjected to two and a half times the design pressure. In addition, one of the four welded nozzles of the IHX was subjected to 26 severe thermal downshock transients, which were interspersed with 156 hr of creep hold time at 1100°F (593°C). At the end of testing, creep rupture cracks were observed in the weldments at the nozzle to cylinder intersections, whether or not they experienced downshock transients. Detailed three-dimensional inelastic analyses were performed to investigate the effects of welding on the creep-rupture strength of weldments. The analyses suggest that the weldment material property variation contributed to creep-rupture cracking at high primary pressure loading. The weld metal and heat-affected zone had higher yield strength, but lower creep ductility compared to the nozzle base material. The analytical predictions and metallurgical observations suggest that the role of residual stresses on creep-rupture cracking is of secondary importance, and need not be numerically simulated in the elevated temperature design of weldments.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Creep damage and fracture of weldments at high temperature;International Journal of Pressure Vessels and Piping;2004-02

2. Creep Behavior of a Large Full-Size Welded Austenitic Steel Plate;Journal of Pressure Vessel Technology;1998-08-01

3. Failure Cause Analysis—A Structural Approach;Journal of Pressure Vessel Technology;1996-11-01

4. Finite element analysis and simulation of welding: a bibliography (1976 - 1996);Modelling and Simulation in Materials Science and Engineering;1996-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3