Global-Position Tracking Control for Multi-Domain Bipedal Walking With Underactuation

Author:

Gao Yuan1,Barhydt Kentaro23ORCID,Niezrecki Christopher4,Gu Yan5

Affiliation:

1. Department of Mechanical Engineering, University of Massachusetts , Lowell, MA 01854

2. Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, MA 02139

3. Massachusetts Institute of Technology

4. Department of Mechanical Engineering, The University of Massachusetts , Lowell, MA 01851

5. School of Mechanical Engineering, Purdue University , West Lafayette, IN 47907

Abstract

Abstract Accurate control of a humanoid robot's global position (i.e., its three-dimensional (3D) position in the world) is critical to the reliable execution of high-risk tasks such as avoiding collision with pedestrians in a crowded environment. This paper introduces a time-based nonlinear control approach that achieves accurate global-position tracking (GPT) for multi-domain bipedal walking. Deriving a tracking controller for bipedal robots is challenging due to the highly complex robot dynamics that are time-varying and hybrid, especially for multi-domain walking that involves multiple phases/domains of full actuation, over actuation, and underactuation. To tackle this challenge, we introduce a continuous-phase GPT control law for multi-domain walking, which provably ensures the exponential convergence of the entire error state within the full and over actuation domains and that of the directly regulated error state within the underactuation domain. We then construct sufficient multiple-Lyapunov stability conditions for the hybrid multi-domain tracking error system under the proposed GPT control law. We illustrate the proposed controller design through both three-domain walking with all motors activated and two-domain gait with inactive ankle motors. Simulations of a ROBOTIS OP3 bipedal humanoid robot demonstrate the satisfactory accuracy and convergence rate of the proposed control approach under two different cases of multi-domain walking as well as various walking speed and desired paths.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

ASME International

Reference45 articles.

1. Multi-Contact Bipedal Robotic Locomotion;Robotica,2017

2. Human-Inspired Multi-Contact Locomotion With AMBER2,2014

3. Performance Analysis and Feedback Control of ATRIAS, A Three-Dimensional Bipedal Robot;ASME J. Dyn. Syst. Meas. Control,2014

4. Dynamic Multi-Domain Bipedal Walking With Atrias Through SLIP Based Human-Inspired Control,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3