Flame Patterns and Combustion Intensity Behind Rifled Bluff-Body Frustums

Author:

San Kuo C.1,Huang Yu Z.2,Yen Shun C.3

Affiliation:

1. Department of Aircraft Engineering, Air Force Institute of Technology, No. 198, Jieshou W. Road, Gangshan District, Kaohsiung City 820, Taiwan e-mail:

2. e-mail:

3. e-mail:  Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No. 2, Beining Road, Zhongzheng District, Keelung City 202, Taiwan

Abstract

Rifled fillisters were milled on cannular frustums to modulate flow behavior and to increase the turbulence intensity (TI). The TI and combustion intensity were compared in four configurations of frustums—unrifled, inner-rifled, outer-rifled, and two-faced rifled. The flame patterns and flame lengths were observed and measured by direct-color photography. The temperature profiles and (total) combustion intensity were detected and calculated with an R-type thermocouple. Three flame patterns (jet, flickering, and lifted flames) were defined behind the pure-jet nozzle. Four flame patterns (jet, flickering, bubble, and turbulent flames) were observed behind the unrifled frustum. The bluff-body frustum changes the lifted flame to turbulent flame due to a high T.I at high central-fuel velocity (uc). The experimental data showed that the grooved rifles improved the air-propane mixing, which then improved the combustion intensity. The rifled mechanism intensified the swirling effect and then the flame-temperature profiles were more uniform than those behind the pure-jet nozzle. The increased TI also resulted in the shortest flame length behind the two-faced rifled frustum and increased the total combustion intensity.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3