Study on the Effects of Cone Height on the Turbulent Nonpremixed Flames Downstream of a Conical Bluff Body

Author:

Ata Alper1,Bedii Ozdemir I.2

Affiliation:

1. Alarko-Carrier San ve Tic AS, R&D Manager—Heating, Sahabettin Bilgisu Cad., GOSB, Gebze, Kocaeli 41480, Turkey

2. Faculty of Mechanical Engineering, Istanbul Technical University, Maslak 34437, Turkey

Abstract

Abstract Flow, thermal, and emission characteristics of turbulent nonpremixed CH4 flames were investigated for three burner heads of different cone heights. The fuel velocity was kept constant at 15 m/s, while the coflow air speed was varied between 0 and 7.4 m/s. Detailed radial profiles of the velocity and temperature were obtained in the bluff body wake at three vertical locations of 0.5D, 1D, and 1.5D. Emissions of CO2, CO, NOx, and O2 were also measured at the tail end of every flame. Flames were digitally photographed to support the point measurements with the visual observations. Fifteen different stability points were examined, which were the results of three bluff body variants and five coflow velocities. The results show that a blue-colored ring flame is formed, especially at high coflow velocities. The results also illustrate that depending on the mixing at the bluff-body wake, the flames exhibit two modes of combustion regimes, namely fuel jet- and coflow-dominated flames. In the jet-dominated regime, the flames become longer when compared with the flames of the coflow-dominated regime. In the latter regime, emissions were largely reduced due to the dilution by the excess air, which also surpasses their production.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference53 articles.

1. Fifteen Lectures on Laminar and Turbulent Combustion;Peters,1992

2. Ecodesign requirements for space heaters and combination heaters;European Commission,2013

3. Effects of the Cone Angle on the Stability of Turbulent Nonpremixed Flames Downstream of a Conical Bluff Body;Ata;Heat Mass Transfer,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3