Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816
Abstract
Abstract
Modern turbomachinery blades have extremely low inherent damping, which can lead to high transient vibrations and failure through high-cycle fatigue. Smart materials enable vibration reduction while meeting strict blade requirements such as weight and aerodynamic efficiency. In particular, piezoelectric-based vibration reduction offers the potential to reduce vibration semi-actively while simultaneously harvesting sufficient energy to power the implementation. The placement and the size of the piezoelectric material is critical to the vibration reduction capabilities of the system. Furthermore, the implementation should target multiple vibration modes. This study develops a procedure to optimize electromechanical coupling across multiple vibration modes for a representative turbomachinery blade with surface-mounted piezoelectric patches. Experimental validation demonstrates good coupling across three targeted modes with a single piezoelectric patch. Placing the piezoelectric material in regions of high signed strain energy for all targeted modes enables vibration reduction across all of the targeted modes.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献