Affiliation:
1. Institute of Sound and Vibration Research, School of Mechanical Engineering, Hefei University of Technology , Hefei 230009, China
2. Science and Technology on Thermal Energy and Power Laboratory, Wuhan Second Ship Design and Research Institute , Wuhan 430205, China
Abstract
Abstract
Dynamic vibration absorber array (DVAA) is a promising technique for vibration mitigation of integral blisk. In this paper, the effectiveness of the DVAA method is experimentally validated on a piezoelectric actuators-driven vibration test rig of a blisk, which remains static during operation. Numerical analysis on the performance of DVAA is included to instruct the design of DVAA used in experiment. The finite element model is adopted for quantitatively dynamic modeling, and a novel parametric reduced order model (PROM) is presented for the electromechanical coupling system composed of blisk, DVAA, and piezoelectric actuators. Three typical modes of the blisk are addressed to illustrate the effectiveness of DVAA for the modes with different characteristics. Then, parametric study on the performance of DVAA for the selected modes is discussed. On this basis, three series of DVAs targeting the selected modes are manufactured and tuned, and single- and multimode vibration tests are conducted to quantify the performance of DVAA via sweep-frequency approach. Numerical and experimental results illustrate the excellent performance of DVAA for different types of modes of blisk. A light-weight DVAA can achieve satisfactory single- and multimode vibration attenuation performance by properly designing and tuning the DVAA, where the amplitude reduction level can reach above 85% at some cases.
Funder
National Natural Science Foundation of China