Experimental and Numerical Investigation of Dynamic Vibration Absorber Array for Vibration Mitigation of Integral Blisk

Author:

Wang Shuai1,Wang Fangchao1,Wu Jun2,Zheng Changjun1,Bi Chuanxing1

Affiliation:

1. Institute of Sound and Vibration Research, School of Mechanical Engineering, Hefei University of Technology , Hefei 230009, China

2. Science and Technology on Thermal Energy and Power Laboratory, Wuhan Second Ship Design and Research Institute , Wuhan 430205, China

Abstract

Abstract Dynamic vibration absorber array (DVAA) is a promising technique for vibration mitigation of integral blisk. In this paper, the effectiveness of the DVAA method is experimentally validated on a piezoelectric actuators-driven vibration test rig of a blisk, which remains static during operation. Numerical analysis on the performance of DVAA is included to instruct the design of DVAA used in experiment. The finite element model is adopted for quantitatively dynamic modeling, and a novel parametric reduced order model (PROM) is presented for the electromechanical coupling system composed of blisk, DVAA, and piezoelectric actuators. Three typical modes of the blisk are addressed to illustrate the effectiveness of DVAA for the modes with different characteristics. Then, parametric study on the performance of DVAA for the selected modes is discussed. On this basis, three series of DVAs targeting the selected modes are manufactured and tuned, and single- and multimode vibration tests are conducted to quantify the performance of DVAA via sweep-frequency approach. Numerical and experimental results illustrate the excellent performance of DVAA for different types of modes of blisk. A light-weight DVAA can achieve satisfactory single- and multimode vibration attenuation performance by properly designing and tuning the DVAA, where the amplitude reduction level can reach above 85% at some cases.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3