A Micro/Macroscopic Analysis for Cyclic Plasticity of Dual-Phase Materials

Author:

Fan J.1

Affiliation:

1. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

In this paper, a methodology is developed to simulate cyclic micro/macroscopic responses of dual-phase materials based on an extension of the self-consistent scheme. This extension is significant because it makes the self-consistent scheme capable of determining overall responses of materials as well as local stress evolution in microstructure. Results show satisfactory agreement between the cyclic responses up to 50 cycles predicted by the present methodology and the experimental data of Bower (1989). The heterogeneous feature of distributions of cyclic stress, strain and energy in microstructure, as well as the essential role of the strong-energy-absorption-capability of the thin layers on the material behavior, and the high strength of the thin-layer microstructure are exploited. The possible impact of this work on issues such as ratchetting of the dual-phase material and the ductile and fatigue behavior of its hard phase, as well as the significance on plasticity modeling of constituents and effective homogeneous inclusions are also mentioned.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3