Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials

Author:

Bodner S. R.1,Partom Y.1

Affiliation:

1. Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa, Israel

Abstract

A set of constitutive equations has been formulated to represent elastic-viscoplastic strain-hardening material behavior for large deformations and arbitrary loading histories. An essential feature of the formulation is that the total deformation rate is considered to be separable into elastic and inelastic components which are functions of state variables at all stages of loading and unloading. The theory, therefore, is independent of a yield criterion or loading and unloading conditions. The deformation rate components are determinable from the current state which permits an incremental formulation of problems. Strain hardening is considered in the equations by introducing plastic work as the representative state variable. The problem of tensile straining has been examined for a number of histories that included straining at various rates, rapid changes of strain rate, unloading and reloading, and stress relaxation. The calculations were based on material constants chosen to represent commercially pure titanium. The results are in good agreement with corresponding experiments on titanium specimens.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3