Competing Fracture of Thin-Chip Transferring From/Onto Prestrained Compliant Substrate

Author:

Liu Huimin12,Liu Zunxu3,Xu Zhoulong3,Yin Zhouping3,Huang YongAn3,Chen Jiankui3

Affiliation:

1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China;

2. Department of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China e-mail:

3. State Key Laboratory of Digital Manufacturing Equipment and Technology, Flexible Electronics Research Center, Huazhong University of Science and Technology, Wuhan 430074, China e-mail:

Abstract

The transferring of thin chip from donor to receptor plays a critical role in advanced electronic package, and the productivity is determined by the interfacial behavior between chip and substrate during chip transferring. The paper investigates analytical competing fracture model of chip–adhesive–substrate structure in thin-chip transferring (peeling-off and placing-on), to discover the critical process condition for distinguishing the interfacial delamination and chip crack. The structure is continuously subjected to ejecting needle, vacuum pick-up head, and wafer fixture, which leads to concentrated and distributed loads and dynamic boundary conditions. Additionally, two criterions based on competing fracture model are presented to determine the extreme chip dimension for peeling-off and the elimination of residual stress for placing-on. The theoretical results are validated by the finite-element simulation with virtual crack-closure technique (VCCT). This paper provides an insight for process optimization, to improve the success ratio and productivity of chip transferring.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3