Affiliation:
1. Clemson’s International Center for Automotive Research, Greenville, SC 29607
2. Clemson’s International Center for Automotive Research, Greenville, SC 29607 e-mail:
Abstract
7075-T6 aluminum suffers from limited elongation during tensile forming; electrically assisted forming (EAF), which uses direct current to improve formability, is a viable candidate process to improve this effect. In past electrical tension testing by various authors, two types of waveforms have been examined: continuous current and square waveforms. For tension, it was shown that the applying current using square waveforms was able to extend formability beyond what continuous current could do, due to reducing the overheating in the necking region. The goal of this paper is to model the temperature and flow stress effects of saw tooth waves by modifying an existing square wave temperature prediction model and combining it with a theoretical flow stress model. Nondecaying and linearly globally decaying saw tooth waveforms are used in an attempt to control the temperature of the necking zone to allow for increased strain at fracture. Comparisons between saw tooth waveforms and square waveforms are exhibited, and it is found that the saw tooth waveforms are inferior to square waves for increasing strain at fracture for 7075-T6.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献