Kinematic Geometry of Wheeled Vehicle Systems

Author:

Sreenivasan S. V.1,Nanua P.2

Affiliation:

1. Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas

2. General Motors Power Train, Ypsilanti, Michigan

Abstract

This paper utilizes a kinematic-geometric approach to study the first-order motion characteristics of wheeled vehicles on even and uneven terrain. The results obtained from first-order studies are compared to those obtained from second order kinematic analyses, and special situations where the first-order analysis is inadequate are discussed. This approach is particularly suited for studying actively actuated vehicles since their designs typically do not include intentional passive compliances. It is shown that if a vehicle-terrain combination satisfies certain geometric conditions, for instance when a wheeled vehicle operates on even terrain or on a spherical surface, the system possesses a singularity—it possesses finite range mobility that is higher than the one obtained using Kutzbach criterion. On general uneven terrain, the same vehicles require undesirable ‘kinematic slipping’ at the wheel-terrain contacts to attain the mobility that it possesses on these special surfaces. The kinematic effects of varying the vehicle and/or terrain geometric parameters from their nominal values are discussed. The design enhancements that are required in existing off-road vehicles to avoid kinematic slipping are presented for a class of vehicles that include two-wheel axles in their designs.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recursive kinematic propagation for wheeled mobile robots;The International Journal of Robotics Research;2015-01-26

2. Articulated Wheeled Vehicles: Back to the Future?;Advances in Mechanisms, Robotics and Design Education and Research;2013

3. Instant Center Based Kinematic Formulation for Planar Wheeled Platforms;Journal of Mechanisms and Robotics;2010-07-27

4. An Adaptive Suspension System for Planetary Rovers;IFAC Proceedings Volumes;2010

5. A Novel Kinematic Model for Rough Terrain Robots;Lecture Notes in Electrical Engineering;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3