Interpolation of Spatial Displacements Using the Clifford Algebra of E4

Author:

Etzel K. R.1,McCarthy J. M.2

Affiliation:

1. Naval Sea Systems Command, 2531 Jefferson Davis Hwy., Arlington, VA 22242-5160

2. Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, CA 92697

Abstract

In this paper we show that the Clifford Algebra of four dimensional Euclidean space yields a set of hypercomplex numbers called “double quaternions.” Interpolation formulas developed to generate Bezier-style quaternion curves are shown to be applicable to double quaternions by simply interpolating the components separately. The resulting double quaternion curves are independent of the coordinate frame in which the key frames are specified. Double quaternions represent rotations in E4 which we use to approximate spatial displacements. The result is a spatial motion interpolation methodology that is coordinate frame invariant to a desired degree of accuracy within a bounded region of three dimensional space. Examples demonstrate the application of this theory to computing distances between spatial displacement, determining the mid-point between two displacements, and generating the spatial motion interpolating a set of key frames.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference21 articles.

1. Bottema, O., and Roth, B., 1979 Theoretical Kinematics, Dover Publications, Inc., New York, pp. 558.

2. Clifford, W.K., 1873, “Preliminary Sketch of Biquaternions,” In Mathematical papers, edited by R. Tucker, Macmillan, London, 1882, pp. 658.

3. Curtis, M.L., 1984, Matrix Groups, Springer-Verlag, New York, NY.

4. deCasteljau, F., 1963, “Outillage me´thodes calcul.” Andre´ Citroe¨n Automobiles SA, Paris.

5. Etzel, K.R., and McCarthy, J.M., 1996, “A Metric on Spatial Displacements Using Biquaternions on SO(4),” IEEE Robotics and Automation Conference, Minneapolis, MN, April 1996.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fitting a planar quadratic slerp motion;Computer Aided Geometric Design;2020-08

2. Design of a Linkage System to Write in Cursive;Journal of Computing and Information Science in Engineering;2017-07-20

3. Characterizing isoclinic matrices and the Cayley factorization;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2016-08-09

4. Using geometric algebra to represent and interpolate tool poses;International Journal of Computer Integrated Manufacturing;2015-05-05

5. Constructing 3D motions from curvature and torsion profiles;Computer-Aided Design;2012-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3