Probabilistic Sensitivity Analysis With Respect to Bounds of Truncated Distributions

Author:

Millwater H.1,Feng Y.1

Affiliation:

1. Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78246

Abstract

Bounds on variables are often implemented as a part of a quality control program to ensure a sufficient pedigree of a product component, and these bounds may significantly affect the product’s design through constraints such as cost, manufacturability, and reliability. Thus, it is useful to determine the sensitivity of the product reliability to the imposed bounds. In this work, a method to compute the partial derivatives of the probability-of-failure and the response moments, such as mean and the standard deviation, with respect to the bounds of truncated distributions are derived for rectangular truncation. The sensitivities with respect to the bounds are computed using a supplemental “flux” integral that can be combined with the probability-of-failure or response moment information. The formulation is exact in the sense that the accuracy depends only upon the numerical algorithms employed. The flux integral is formulated as a special case of the probability integral for which the sensitivities are being computed. As a result, the methodology can be implemented with any probabilistic method, such as sampling, first order reliability method, conditional expectation, etc. Moreover, the maximum and minimum values of the sensitivities can be obtained without any additional computational cost. The methodology is quite general and can be applied to both component and system reliability. Several numerical examples are presented to demonstrate the advantages of the proposed method. In comparison, the examples using Monte Carlo sampling demonstrated that the flux-based methodology achieved the same accuracy as a standard finite difference approach using approximately 4 orders of magnitude fewer samples. This is largely due to the fact that this method does not rely upon subtraction of two near-equal numbers.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference22 articles.

1. The Practical Use of Fracture Mechanics

2. The Development of Anomaly Distributions for Aircraft Engine Titanium Disk Alloys;Subteam to the Aerospace Industries Association Rotor Integrity Subcommittee

3. Identification and Review of Sensitivity Analysis Methods;Frey;Risk Anal.

4. Survey of Sampling-Based Methods for Uncertainty and Sensitivity Analysis;Helton;Reliab. Eng. Syst. Saf.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3