Additive-Manufactured Organic Interposers

Author:

Roshanghias A.1,Krivec M.1,Bardong J.1,Binder A.1

Affiliation:

1. CTR Carinthian Tech Research AG, Europastr. 12, Villach A-9524, Austria

Abstract

Abstract The trend toward heterogeneous integration of optoelectronic, electronic, and micromechanical components favors three-dimensional (3D) integration in which the components are not arranged side-by-side but rather in vertical stacks. This presents a particular challenge due to the fact that the stacked components have different geometric dimensions, and their contact surfaces are also dissimilar. Therefore, an intermediate substrate, the so-called interposer, with different formats (i.e., flip-chip, wire-bond, and hybrid flip-chip/wire bond) comes into play. Currently, the interposers are mainly made of silicon or glass, which incur huge additional costs to the packaged components. In this study, the unique advantages of additive manufacturing (AM) are exploited to realize organic interposers. The proposed interposers provide easy signal probing and flexible die-to-board integration in lower costs without any lithography process, drilling, plating, or any waste. Accordingly, the two state-of-the-art 3D printers (i.e., a monomaterial 3D printer and a bimaterial 3D printer) were utilized for the manufacturing of the interposer parts. The complementary circuitry for vias and through-holes was facilitated by also additive technologies, i.e., 2D-inkjet printing and microdispensing. Moreover, and to manifest the unique possibilities within AM for the next generation of interposers, two examples for 3D-printed interposers with incorporated added-features, i.e., pillars for flip-chip bonding and cavities for face-up die-attachment were realized. The assemblies were consequently assessed by electrical examinations. Conclusively, the main opportunities and challenges toward the full implementation of AM technology for the fabrication of organic interposers with added-features such as integrated multipurpose vias were discussed. Based on the results obtained from this study, it was found that bimaterial 3D printer was more efficient and powerful for the construction of interposers.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3