Deformation and Life Estimates for a Metal Matrix—Spherical Particulate Subjected to Thermomechanical Loading

Author:

McDonald Russell J.1,Kurath Peter1

Affiliation:

1. Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, IL 61820

Abstract

Thermal cycling has been experimentally demonstrated to diminish the performance of many reinforced materials. The coefficient of thermal expansion mismatch is the driving force for the development of high self-equilibrating stresses and strains in the vicinity of the reinforcement. To glean the magnitude of these stresses, a simple geometry, a spherical particulate (SiC) in a spherical domain (aluminum W319) was investigated. A set of partitioned strain rate equations considered temperature dependent material properties for thermal, elastic, mechanical plastic, and creep plastic deformation. The mechanical plasticity model utilized an improved Armstrong-Fredrick kinematic hardening algorithm and a Fisher type rate dependent yield criteria. A hyperbolic sine relation proposed by Dorn (1954, “Some Fundamental Experiments on High Temperature Creep,” J. Mech. Phys. Solids, 3, pp. 85–116) was used to model creep deformation. A multidimensional residual stress state due to cooling from the molten state was considered in the simulations. Two damage parameters, Findley and equivalent plastic strain, were employed to estimate cyclic damage. While the life estimates are crude, they both predict finite lives for reasonable service temperature ranges.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference59 articles.

1. Proposed Framework for Thermomechanical Fatigue (TMF) Life Prediction of Metal Matrix Composites (MMCs);Halford

2. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems;Eshelby;Proc. R. Soc. London, Ser. A

3. Effect of Reinforcement Geometry on Matrix Stresses in Three Aluminum Metal Matrix Composite Systems;Johannesson;Scr. Mater.

4. Partical Reinforcement of Ductile Matrices Against Plastic Flow and Creep;Bao;Acta Mater.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Localized Deformation in AA 2024-O;Journal of Engineering Materials and Technology;2009-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3