Growth of Binary Alloyed Semiconductor Crystals by the Vertical Bridgman-Stockbarger Process with a Strong Magnetic Field

Author:

LaPointe Stephen J.1,Ma Nancy1,Mueller D. W.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Campus Box 7910, Raleigh, NC 27695

2. Department of Engineering, Indiana University - Purdue University, Ft. Wayne, IN 46805

Abstract

This paper presents a model for the unsteady species transport for the growth of alloyed semiconductor crystals during the vertical Bridgman-Stockbarger process with a steady axial magnetic field. During growth of alloyed semiconductors such as germanium-silicon (GeSi) and mercury-cadmium-telluride (HgCdTe), the solute’s concentration is not small, so that density differences in the melt are very large. These compositional variations drive compositionally driven buoyant convection, or solutal convection, in addition to thermally driven buoyant convection. These buoyant convections drive convective transport, which produces nonuniformities in the concentration in both the melt and the crystal. This transient model predicts the distribution of species in the entire crystal grown in a steady axial magnetic field. The present study presents results of concentration in the crystal and in the melt at several different stages during crystal growth.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrodynamic performance optimization and experimental verification of underwater glider based on parametric method;Science Progress;2022-10

2. Hydrodynamic performance and calculation of lift–drag ratio on underwater glider;Journal of Marine Science and Technology;2020-03-30

3. Model of thermal underwater gliders with PEMFC;IOP Conference Series: Materials Science and Engineering;2018-11-05

4. A simplified shape optimization strategy for blended-wing-body underwater gliders;Structural and Multidisciplinary Optimization;2018-05-29

5. Heat transfer—A review of 2005 literature;International Journal of Heat and Mass Transfer;2010-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3