Hydrodynamic performance optimization and experimental verification of underwater glider based on parametric method

Author:

Qin Hongde1,Li Lingyu2,Li Peng3ORCID,Wang Xiangqian4

Affiliation:

1. Science and Technology on Underwater Vehicle Technology Laboratory, Harbin Engineering University, Harbin, China

2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China

3. Yantai Research Institute and Graduate School of Harbin Engineering University, Yantai, China

4. Research Institute, Yichang, China

Abstract

In this paper, the wing body fusion method is used to complete the design of underwater glider. On this basis, the traditional optimization algorithm of underwater gliding wing shape is improved. Based on the improved Hicks Henne algorithm and genetic algorithm, the shape optimization of underwater glider is completed. Through the further optimization of the overall performance, the overall shape of the glider is improved and the maximum lift drag ratio is increased. Finally, the physical experiment of the optimized shape is carried out according to the experimental water area of the circulating water tank. Through the comparative analysis of the data, the accuracy of the numerical calculation is verified.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

the Key Technology Research and Development Program of Shandong

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3