Residual Stresses Due to Rigid Cylinder Indentation and Rolling at a Very High Rolling Load

Author:

Ali M. Y.1,Pan J.1

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 e-mail:

Abstract

In this paper, residual stresses due to indentation and rolling of a rigid cylinder on a finite plate at a very high rolling load with a relative peak pressure of 22 are examined by two-dimensional plane strain finite element analyses using abaqus for the first time. In the finite element analyses, the roller is modeled as rigid and has frictionless contact with the finite plate. The geometry of the finite plate and its boundary conditions are assigned to correspond to those of fillet rolling of crankshafts with the constraint in the rolling direction. Finite element analyses with different meshes for single indentation on an elastic flat plate under plane strain conditions are first carried out, and the results are benchmarked with those of the elastic Hertzian solutions to establish the requirement of the finite element meshes for acceptable numerical results. The results show that the accuracy of computational results is limited by the discretization of the finite element analysis by a plot of the contact width as a function of the load. For accurate peak pressure, a total of at least eight linear elements are needed. Finite element analyses with different meshes for single indentation on an elastic–plastic flat plate under plane strain conditions are then carried out. The plate material is modeled as an elastic–plastic power-law strain hardening material with a nonlinear kinematic hardening rule for loading and unloading. The computational results are compared to establish the requirement of the finite element meshes for acceptable numerical results within 4 mm distance to the rolling surface for the crankshaft fatigue analyses. The computational results for rolling at the relative peak pressure of 22 show that the symmetric Hertzian or modified Hertzian pressure distribution should not be used to represent the contact pressure distribution for rolling simulation, while the computational results for rolling at the relative peak pressure of 5 show that the symmetric Hertzian or modified Hertzian pressure distribution may be used to represent the contact pressure distribution for rolling simulation. The computational results for the rolling case also show a significantly higher longitudinal compressive residual stress and a lower out-of-plane compressive residual stress along the contact surface when compared to those for the single indentation case. The results suggest that the effects of rolling must be accounted for when two-dimensional finite element analyses of crankshaft sections are used to investigate the residual stresses due to fillet rolling of the crankshafts under the prescribed roller loads. Due to the boundary conditions of the finite plate, the compressive residual stresses are larger when compared to those when the boundary conditions of the finite plate are fully relaxed.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3