Performance Prediction for Ultrasonic Spot Welds of Short Carbon Fiber-Reinforced Composites Under Shear Loading

Author:

Wang Kaifeng1,Shriver Daniel2,Banu Mihaela3,Jack Hu S.2,Xiao Guoxian4,Arinez Jorge4,Fan Hua-Tzu4

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48105 e-mail:

2. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125 e-mail:

4. Manufacturing Systems Research Lab, General Motors R&D Center, Warren, MI 48090 e-mail:

Abstract

Ultrasonic welding is a well-known technique for joining thermoplastics and has recently been introduced to joining carbon fiber-reinforced composites (CFRC). However, suitable models for predicting joint performance have not yet been established. At present, most failure models for bonded composites are built based on uniform adhesive joints, which assume constant joint properties. Nevertheless, the joint properties of ultrasonic spot welds for CFRC are variable, which depend on the input welding parameters. In this paper, the effect of welding energy, which is the most important welding parameter, on the joint properties is investigated. Then, a surface-based cohesive performance model based on mode-II (in-plane) shear loading is developed to predict the joint performance, wherein the critical fracture parameters in the model are described via the functions of welding energy. After comparing the simulated results with experiments, the model is proven feasible in predicting the joint properties of the ultrasonic spot welds under shear loading condition, and hence, a mix-mode cohesive-zone model is practical to predict the joint performance under any loading conditions with the predicted fracture parameters.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3