Large Eddy Simulation on the Effects of Coal Particles Size on Turbulent Combustion Characteristics and NOx Formation Inside a Corner-Fired Furnace

Author:

Sun Wenjing1,Zhong Wenqi2,Zhang Jingzhou1,Echekki Tarek3

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. School of Energy and Environment, Southeast University, Nanjing 210096, China

3. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910

Abstract

Abstract The effects of pulverized coal particles’ sizes on the coal combustion characteristics are numerically studied in a laboratory-scale tangentially fired furnace. The turbulent gas flow and the coal particle motion are solved by employing the large eddy simulation (LES) and the discrete phase model (DPM). The mixture fraction probability density function (MF-PDF) is coupled to simulate the non-premixed pulverized coal combustion. It is found that the coal combustion efficiency is positively affected by the dispersion of coal powders. The particle dispersion and the coal combustion are augmented by the intensive impingement caused by the corner-injected flow. Large coal particles, with their greater inertia, enhance particle agglomerations, which limit the combustion of volatile and char. Accordingly, the average flame temperature decreases with the growing particle sizes. Also, the O2 concentration increases slightly because of the incomplete coal combustion, and the CO2 concentration decreases gradually. In contrast, the CO concentration increases markedly in the furnace center due to the presence of a reducing atmosphere. The NO concentration exhibits an exponential decline with the increased particle size. A relatively stable combustion and a relatively low NOx formation are acquired inside such a corner-fired furnace when the particle Stokes number is a little greater than 1.

Funder

Natural Science Fund of China

National Key R&D Program of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3