A Mathematical Model of Industrial Waste-Derived Fuel Droplet Combustion in High-Temperature Air

Author:

Antonov DmitriiORCID,Glushkov DmitriiORCID,Paushkina KristinaORCID,Kuznechenkova Daria,Ramanathan Anand

Abstract

The results of a theoretical and experimental study of the processes of ignition and combustion of a single composite liquid fuel (CLF) droplet based on wet coal processing waste and combustible municipal solid waste under radiant and convective heating are presented. Based on the results of a detailed analysis of video recordings and previously obtained experimental data from the ignition and combustion of a single CLF droplet, a mathematical model was developed. The advantage of the developed mathematical model lies in the specification of sequential physical and chemical processes of the high-temperature decomposition of fuel in a high-temperature gaseous medium. A numerical simulation of combustion characteristics was carried out in the Ansys Fluent commercial software for five different CLF compositions. The ignition-delay times were established for fuel droplets that were in a preheated motionless air environment, a temperature in the range of 723–1273 K, and an air flow heated to 723–973 K moving at a velocity of 3 m/s. Using the asymptotic procedure, satisfactory analytical solutions are obtained for the multistage nonlinear problem of ignition and combustion of a single CLF droplet. The possibility for the practical application of the developed program in Ansys Fluent in predicting the characteristics of the ignition processes of CLF droplets is substantiated.

Funder

Russian Foundation for Basic Research

National Council of Brazil for Scientific and Technological Development

Ministry of Science & Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference73 articles.

1. Challenges for Sustainable Smart City Development: A Conceptual Framework;Khan;Sustain. Dev.,2020

2. (2021, March 01). IEA World Energy Outlook 2020. Available online: https://iea.blob.core.windows.net/assets/a72d8abf-de08-4385-8711-b8a062d6124a/WEO2020.pdf.

3. Global Information Inc (2020). Global Industrial Waste Management Market-2019–2026, Global Information Inc.

4. Gupta, A., and Paranjape, N. (2020). Industrial Solid Waste Management Market 2020–2026, Global Market Insights Inc.

5. Kaza, S., Yao, L.C., Bhada-Tata, P., and Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, World Bank.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3