Affiliation:
1. Imation Corporation, Data Storage & Information Management, 1 Imation Place, Oakdale, MN 55128
Abstract
A lubrication model for the head-media interface is presented which includes the effect of porosity in the media coating. Experimental data is shown which illustrates the reduction in head-media spacing as porosity is increased. A modified Reynolds equation is derived to account for the effects of coating porosity. Other authors have considered a very thin porous layer to simulate a liquid lubricant or surface microstructure on a nonporous substrate. This study considers a porous layer that can be much larger than the bearing clearance. Darcy’s law is used in the porous layer. Velocity-slip effects, resulting both from rarefaction and the porous boundary, are considered. The modified Reynolds equation is applied to a simple capillary model of a porous layer as an illustrative example. The modified Reynolds equation was incorporated into a finite-element model for the head-media interface. Computations show reduced head-media clearance as porosity and permeability are increased in agreement with experimental data.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献