The Effect of Porosity on the Head-Media Interface

Author:

Knudsen James K.1,Palmquist Kenneth E.1

Affiliation:

1. Imation Corporation, Data Storage & Information Management, 1 Imation Place, Oakdale, MN 55128

Abstract

A lubrication model for the head-media interface is presented which includes the effect of porosity in the media coating. Experimental data is shown which illustrates the reduction in head-media spacing as porosity is increased. A modified Reynolds equation is derived to account for the effects of coating porosity. Other authors have considered a very thin porous layer to simulate a liquid lubricant or surface microstructure on a nonporous substrate. This study considers a porous layer that can be much larger than the bearing clearance. Darcy’s law is used in the porous layer. Velocity-slip effects, resulting both from rarefaction and the porous boundary, are considered. The modified Reynolds equation is applied to a simple capillary model of a porous layer as an illustrative example. The modified Reynolds equation was incorporated into a finite-element model for the head-media interface. Computations show reduced head-media clearance as porosity and permeability are increased in agreement with experimental data.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of a flexible web on a grooved concave surface under softEHL;Tribology International;2013-05

2. Coatings and surface modification technologies: a finite element bibliography (1995–2005);Modelling and Simulation in Materials Science and Engineering;2005-08-04

3. Bibliography (1995–2005) of coating property simulations;Modelling and Simulation in Materials Science and Engineering;2005-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3