Affiliation:
1. Department of Mechanical Engineering, National Kaohsiung institute of Technology, 415 Chien Kung Road, Kaohsiung, Taiwan, 80782
Abstract
In this study, a porous media model is developed which can be applied to thin film lubrication problems. The microstructure of bearing surfaces is modeled as porous layers attached to the impermeable substrate. The Brinkman-extended Darcy equations and Stokes’ equations are utilized to model the flow in the porous region and fluid film region, respectively. The stress jump boundary condition at the porous media/fluid film interface and effects of viscous shear are included in deriving the modified Reynolds equation. The present model can correct and modify a previous study based on the Darcy model with slip-fiow effects or another based on the Brinkman-extended Darcy model with stress continuity at the porous media/fluid film interface. In the results, the effects of material properties: viscosity ratio (αi2), thickness of porous layer (Δi), permeability (Ki), stress jump parameter (βi), on the velocity distributions, and performance of one-dimensional converging wedge problems are discussed.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献