Numerical Investigation on the Effect of Cylindrical Combustion Chamber Diameter-to-Depth Ratio on the Performance of Stoichiometric Natural Gas Engine With Exhaust Gas Recirculation

Author:

Qian Yejian1,Wei Xiaofei1,Hua Yang1,Meng Shun1

Affiliation:

1. School of Automotive and Transportation Engineering, Hefei University of Technology , Hefei, Anhui 230009, China

Abstract

Abstract In this study, three cylindrical combustion chambers with different diameter-to-depth ratios were designed to accelerate the flame propagation and enhance the combustion ratio of CH4 in a stoichiometric natural gas engine with exhaust gas recirculation (EGR). The effects of the diameter-to-depth ratio on the combustion and emission and the interaction between the flow field distribution and flame propagation were investigated numerically. The results showed that the value of the swirl ratio and turbulent kinetic energy (TKE) near the top dead center (TDC) could be increased continuously with a smaller diameter-to-depth ratio, which was conducive to promoting the uniform flame spread in the radial direction and enhanced the combustion efficiency. The peaks of pressure, heat release rate (HRR), and temperature dramatically increased by using the cylindrical chamber with a higher swirl ratio and higher TKE in the stoichiometric natural gas engines, thereby allowing more fuel energy to be released near the TDC in the chamber. The cylindrical chamber with the diameter-to-depth ratio of 2.36 displayed a higher peak value of combustion pressure and temperature, smaller CH4 and CO emissions, but more NOx emission, compared to other chambers. Moreover, the raised bottom bulge of the piston distorted the flame front, which accelerated the flame speed in the vertical direction. The CA50 was therefore advanced to the TDC. Thus, the cylindrical chamber with the increased squish area and the raised bottom bulge was conducive for the stoichiometric natural gas engine with EGR.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3