Model-Based Predictive Control and Dithering Control for an Integrated Gasoline Engine and Three-Way Catalytic Converter System

Author:

Yang Kuo1,Chen Pingen1

Affiliation:

1. Department of Mechanical Engineering, Tennessee Technological University, Cookeville, TN 38505

Abstract

Abstract Controls of integrated gasoline engine and aftertreatment systems are critical for fuel efficiency improvement and emission regulation. This paper aims to develop novel model-based three-way catalytic converter (TWC) controls to reduce the fuel consumption and tailpipe emissions for a gasoline engine. A model-based dither control and a nonlinear model predictive control (MPC)-based control are presented, respectively. The proposed TWC dither control utilizes a systematically designed dither cycle configuration (including dithering amplitude, offset, and frequency) based on a control-oriented model, with the capability to adapt the dither cycle configuration to various engine operating conditions. The MPC control can optimize engine air–fuel ratio (AFR) to maintain the oxygen storage of TWC at a desired level and thus meet the tailpipe NOx, CO, and HC emission requirements. The efficacies of both model-based TWC controls are validated in simulation with MPC control improving CO emission conversion efficiencies by 8.42% and 4.85% in simplified US06 and urban dynamometer driving schedule (UDDS) driving cycles, when compared to a baseline dithering-based AFR control. Meanwhile, NOx emission conversion efficiency is maintained above the required limit of 95%, while the fuel efficiency remains at the same level as the baseline control methodology.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference41 articles.

1. Air-Fuel Ratio Control of Spark Ignition Engines Using a Switching LPV Controller;IEEE Trans. Control Syst. Technol.,2011

2. Modeling Dynamic Phenomena in 3-Way Catalytic Converters;Chem. Eng. Sci.,1999

3. Monthly Energy Review;U.S. Energy Information Administration,2016

4. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014;U.S. Environmental Protection Agency,2016

5. Model Predictive Control of a Fuel Injection System With a Radial Basis Function Network Observer;ASME J. Dyn. Syst., Meas., Control,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3