Robust Nonlinear Model Predictive Control With Model Predictive Sliding Mode for Continuous-Time Systems

Author:

Hill Elyse1,Gadsden S. Andrew2,Biglarbegian Mohammad3

Affiliation:

1. Intelligent and Cognitive Engineering (ICE) Laboratory, College of Engineering and Physical Sciences (CEPS), University of Guelph, Guelph, ON N1G 2W1, Canada

2. ICE Laboratory, Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada

3. Autonomous & Intelligent Control for Vehicles Laboratory, CEPS, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

Abstract This paper presents a robust, tube-based nonlinear model predictive controller for continuous-time systems with additive disturbances which cascades two sampled-data model predictive controllers: the first creates a desired path using nominal dynamics, and the second maintains the true state close to the nominal state by regulating a sliding variable designed on the error between the true and nominal states. The sampled-data model predictive approach permits easy incorporation of continuous-time sliding mode dynamics, allowing a dynamic boundary layer and tube design to be included. In this way, the control applied to the system capitalizes on the robustness properties of traditional sliding mode control (SMC) while incorporating system constraints. Stability analysis is presented in the context of input-to-state stability (ISS) for continuous-time systems. The proposed controller is implemented on two case studies, is compared to benchmark tube-based model predictive controllers, and is evaluated using average root-mean-square (RMS) values on the state and input variables, in addition to average integral square error (ISE) and integral absolute error (IAE) values on the position states. Results reveal that the proposed technique responds to higher levels of disturbance with significant increases in control effort, eliminates constraint violation by using of constrained SMC as the secondary controller, and maintains similar tracking performance to benchmark controllers at lower levels of control effort.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3