A New Class of Synthetic Jet Actuators—Part I: Design, Fabrication and Bench Top Characterization

Author:

Gilarranz J. L.1,Traub L. W.1,Rediniotis O. K.1

Affiliation:

1. Department of Aerospace Engineering, Texas A&M University, College Station, Texas 77843-3141

Abstract

Although the potential of synthetic jets as flow separation control actuators has been demonstrated in the existing literature, there is a large gap between the synthetic jet actuators (SJA) used in laboratory demonstrations and the SJAs needed in realistic, full-scale applications, in terms of compactness, weight, efficiency, control authority and power density. In most cases, the SJAs used in demonstrations are either too large or too weak for realistic applications. In this work, we present the development of a new class of high-power synthetic jet actuators for realistic flow control applications. The operating principle of the actuator is the same as that of crankshaft driven piston engines, which makes a significant part of the technology necessary for the actuator development available off-the-shelf. The design of the actuator is modular and scalable. Several “building block” units can be stacked in series to create the actuator of the desired size. Moreover, active exit slot reconfiguration, in the form of variable exit slot width, decouples the actuator frequency from the actuator jet momentum coefficient and allows the user to set the two independently (within limits). Part I of this paper presents the design, fabrication and bench top characterization of the actuator. Several versions of the actuator were designed, built and tested, leading up to the development of a six-piston compact actuator that has a maximum power consumption of 1200 W (1.6 hp) and can produce (for the tested conditions) peak exit velocities as high as 124 m/s. In Part II, the actuator was housed in the interior of a NACA0015 profiled wing with a chord of 0.375 m (14.75 inches). The assembly’s performance in controlling flow separation was studied in the wind tunnel.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3