Design of an Acoustic Synthetic Jet Actuator for Flow Control

Author:

Lu LianshanORCID,Li Dong,Zhang Zhenhui,Yang Yin,Liu Dawei,Tao Yang,Lu Bo

Abstract

Synthetic jet technology is widely adopted in active flow control. An actuator with an oscillating diaphragm is a commonly used excitation device for synthetic jet generation. However, it has a disadvantage wherein the volume at the cross-section of the cavity varies unevenly when the diaphragm vibrates, which makes it difficult to use multiple jets corresponding to one diaphragm. In this paper, an acoustic synthetic jet actuator that can generate multiple jets with one diaphragm was designed. The diaphragm vibrated in a cylindrical cavity, transferring air to another constant-volume square cavity through pipes. The square cavity was covered with a multiple-orifice plate for the expulsion and suction of the ambient air. Through this means, the implementation of multiple jets corresponding to one diaphragm was achieved. The multiple jets are called distributed synthetic jets in this paper. Governing parameters that determined the performance of the distributed synthetic jets were given by theoretical derivation. It was found that, under specific geometry conditions, the governing parameters were mainly the frequency and voltage of the input signal to the actuator. Then, the velocity characteristics of the distributed synthetic jets were measured by using a constant-temperature anemometer and the parameter space was determined. The results showed that it was practicable to apply the acoustic actuator to turbulent boundary layer flow control.

Funder

Ministry of Industry and Information Technology (MIIT), China, and Directorate-General for Research and Innovation (DG RTD), European Commission

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3