Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices

Author:

Wei Xiaojin1,Joshi Yogendra2,Patterson Michael K.3

Affiliation:

1. IBM, 2070 Route 52, Hopewell Junction, NY 12533

2. Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332

3. Intel Corporation, JF1-231, 2111 NE 25th Avenue, Hillsboro, OR 97124

Abstract

One of the promising liquid cooling techniques for microelectronics is attaching a microchannel heat sink to, or directly fabricating microchannels on, the inactive side of the chip. A stacked microchannel heat sink integrates many layers of microchannels and manifold layers into one stack. Compared with single-layered microchannels, stacked microchannels provide larger flow passages, so that for a fixed heat load the required pressure drop is significantly reduced. Better temperature uniformity can be achieved by arranging counterflow in adjacent microchannel layers. The dedicated manifolds help to distribute coolant uniformly to microchannels. In the present work, a stacked microchannel heat sink is fabricated using silicon micromachining techniques. Thermal performance of the stacked microchannel heat sink is characterized through experimental measurements and numerical simulations. Effects of coolant flow direction, flow rate allocation among layers, and nonuniform heating are studied. Wall temperature profiles are measured using an array of nine platinum thin-film resistive temperature detectors deposited simultaneously with thin-film platinum heaters on the backside of the stacked structure. Excellent overall cooling performance (0.09°C∕Wcm2) for the stacked microchannel heat sink has been shown in the experiments. It has also been identified that over the tested flow rate range, counterflow arrangement provides better temperature uniformity, while parallel flow has the best performance in reducing the peak temperature. Conjugate heat transfer effects for stacked microchannels for different flow conditions are investigated through numerical simulations. Based on the results, some general design guidelines for stacked microchannel heat sinks are provided.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference42 articles.

1. Air-Cooling Extension-Performance Limits for Processor Cooling Applications;Sauciuc

2. Extension of Air Cooling for High Power Processors;Xu

3. Next Generation Devices for Electronic Cooling With Heat Rejection to Air;Webb;ASME J. Heat Transfer

4. A Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets;Fabbri;ASME J. Heat Transfer

5. Evaluation of Single Phase Flow in Microchannels for High Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology;Kandlikar

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3