Porohyperelastic Finite Element Modeling of Abdominal Aortic Aneurysms

Author:

Ayyalasomayajula Avinash1,Vande Geest Jonathan P.2,Simon Bruce R.3

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Arizona, P.O. Box 210119, Tucson, AZ 85721-011

2. Department of Aerospace and Mechanical Engineering, Department of Biomedical Engineering, Biomedical Engineering Interdisciplinary Program, and BIO5 Institute, University of Arizona, Tucson, AZ 85721-011

3. Department of Aerospace and Mechanical Engineering and Biomedical Engineering Interdisciplinary Program, University of Arizona, Tucson, AZ 85721-011

Abstract

Abdominal aortic aneurysm (AAA) is the gradual weakening and dilation of the infrarenal aorta. This disease is progressive, asymptomatic, and can eventually lead to rupture—a catastrophic event leading to massive internal bleeding and possibly death. The mechanical environment present in AAA is currently thought to be important in disease initiation, progression, and diagnosis. In this study, we utilize porohyperelastic (PHE) finite element models (FEMs) to investigate how such modeling can be used to better understand the local biomechanical environment in AAA. A 3D hypothetical AAA was constructed with a preferential anterior bulge assuming both the intraluminal thrombus (ILT) and the AAA wall act as porous materials. A parametric study was performed to investigate how physiologically meaningful variations in AAA wall and ILT hydraulic permeabilities affect luminal interstitial fluid velocities and wall stresses within an AAA. A corresponding hyperelastic (HE) simulation was also run in order to be able to compare stress values between PHE and HE simulations. The effect of AAA size on local interstitial fluid velocity was also investigated by simulating maximum diameters (5.5 cm, 4.5 cm, and 3.5 cm) at the baseline values of ILT and AAA wall permeability. Finally, a cyclic PHE simulation was utilized to study the variation in local fluid velocities as a result of a physiologic pulsatile blood pressure. While the ILT hydraulic permeability was found to have minimal affect on interstitial velocities, our simulations demonstrated a 28% increase and a 20% decrease in luminal interstitial fluid velocity as a result of a 1 standard deviation increase and decrease in AAA wall hydraulic permeability, respectively. Peak interstitial velocities in all simulations occurred on the luminal surface adjacent to the region of maximum diameter. These values increased with increasing AAA size. PHE simulations resulted in 19.4%, 40.1%, and 81.0% increases in peak maximum principal wall stresses in comparison to HE simulations for maximum diameters of 35 mm, 45 mm, and 55 mm, respectively. The pulsatile AAA PHE FEM demonstrated a complex interstitial fluid velocity field the direction of which alternated in to and out of the luminal layer of the ILT. The biomechanical environment within both the aneurysmal wall and the ILT is involved in AAA pathogenesis and rupture. Assuming these tissues to be porohyperelastic materials may provide additional insight into the complex solid and fluid forces acting on the cells responsible for aneurysmal remodeling and weakening.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3