Affiliation:
1. Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan 107, Republic of China
Abstract
It is well known that the in-plane stress and displacement distributions in a stationary annular disk under stationary edge tractions can be obtained through the use of Airy stress function in the classical theory of linear elasticity. By using Lame’s potentials, this paper extends these solutions to the case of a spinning disk under stationary edge tractions. It is also demonstrated that the problem of stationary disk-spinning load differs from the problem of spinning disk-stationary load not only by the centrifugal effect, but also by additional terms arising from the Coriolis effect. Numerical simulations show that the amplitudes of the stress and displacement fields grow unboundedly as the rotational speed of the disk approaches the critical speeds. As the rotational speed approaches zero, on the other hand, the in-plane stresses and displacements are shown, both numerically and analytically, to recover the classical solutions derived through the Airy stress function.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献