Determination of Coupling Loss Factors Between Two Plates Joined at a Right Angle Using the Wave Approach

Author:

Patil Vinayak H.1,Manik Dhanesh N.2

Affiliation:

1. Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India

2. Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India

Abstract

Abstract Vibration transmission through two homogenous isotropic plates, joined at a right angle to each other, is studied using a wave approach in the audible frequency range. In this study, a generalized mathematical model is developed for the right-angled joint using a spring and dashpot model, which represents welded, riveted, and bolted joints. The energy transfer for the spring-dashpot model is determined in terms of transmission and reflection efficiencies of the aforementioned joints. The effect of variation of stiffness and damping of the joints on the transmission and reflection efficiencies is studied for variation in the coupled plate thickness and density ratio. The transmission efficiency is used to theoretically determine the coupling loss factor (CLF), which is an important parameter of statistical energy analysis (SEA) models. It is observed that with an increase in the mass of the second plate, it acts as a blocking mass to energy transfer. Experiments were performed on two mild steel plates connected using weld, rivet, and bolt joints to determine the CLFs for the joints and to verify the theoretical model. The CLFs determined from experiments and predicted using the wave approach were compared with those determined from the power injection method (PIM).

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3